
1



Introduction 4

Functional style 5

Imperative vs. declarative 5

Working with arrays 10

Avoid using classes 18

Working with instances when you really don’t have to 19

Classes vs Hooks in React 23

Create your own abstractions 25

Control flows 28

Guard clauses 28

Skip the ‘else’ part 31

Using a switch-statement 35

Using functions and partial applications 36

Code hygiene & good practices 42

Pass arguments as an object 42

Return associated data as tuples 46

Do not extend builtins 47

Avoid default exports 48

Poor Discoverability 49

Annoying when using CommonJS 49

Annoying when using Dynamic Imports 49

Name Protection 49

Re-exporting 49

Drop the single-letter variable names 50

Arrow function vs. function declaration 51

2



TypeScript 52

Don’t overdo it 52

Let TypeScript infer the type 54

Avoid using any 56

React 57

Use React hooks 57

Don’t worry about arrow functions in JSX 57

Don’t return JSX from inner functions 59

Ternary inside the JSX 60

Split into a separate component 60

Don’t wrap useEffect in an async IIFE 61

Don’t overuse the inbuilt hooks 62

Stop overusing useMemo 62

Stop overusing useCallback 64

NodeJS & AWS Lambda 65

Use promises instead of callbacks 65

Using promisify 66

Using module/promises 67

Async handlers in AWS Lambda 67

Final words 69

Which conventions should I use? 69

Additional resources 70

3



Introduction
I have had a front-row seat while JavaScript has taken over the industry.

In the past ten years of working as a freelance consultant, I’ve had the joy of

working with many different teams. I’ve participated in countless PR code

reviews and many heated discussions about JavaScript, best practices, clean

code, patterns, and coding styles.

I have taught JavaScript, React, and NodeJS on various talks and workshops,

and furthermore, I’ve spent the last year notoriously presenting my Twitter

audience with small bits of code, asking them what they preferred and if they

would have approved it in a PR.

Here are my findings, impressions, and personal experience.

All put together in an easy-to-digest e-book including examples and

explanations.

This book is opinionated.

For each and every example in this book, you will find developers in the

industry who disagree. This book teaches industry preferences and

standards. But it is, by definition, opinionated.

This is not a JavaScript fundamentals book.

Do note, that this book assumes fundamental understanding of the

JavaScript language.

4



Functional style
JavaScript is a multi-paradigm programming language.

This means that the language is open for programming in different styles,

including object-oriented, procedural, prototypal, and functional.

By far, the most common styles you see are object-oriented and functional.

Even though object-oriented languages such as Java and C# have had an

enormous impact on the industry, the functional style JavaScript is the most

popular and accepted in 2021. This is where you should be heading.

Imperative vs. declarative

Object-oriented programming follows an imperative paradigm.

Functional programming follows a declarative paradigm.

Let’s look at the difference.

Imperative programming focuses on how you want something done.

You alter the state of your program step by step.

Declarative programming focuses on what the end result will be.

How to obtain that result is less interesting, as long as the process of

obtaining it does not alter the state of your program.

5



When a function carries out a task in a deterministic way without changing

its environment (changing state in its surroundings), we call it pure.

Let’s say we want to iterate through a list of numbers and multiply them all by

2.

An imperative style would look something like this.

Simple and straightforward.

But there are two key observations we need to make here:

1. The function multiplyAll does not have a return value.

Since it’s not returning anything, we cannot determine the result based

on the input. Hence, it’s not pure.

2. The original listOfNumbers array gets mutated.

The function alters (changes the state) of the input given as an

argument. Hence, it’s not immutable.

6



These two simple behaviors are likely to result in bugs, code that is hard to

debug, hard to test, and is likely to break your application at scale!

On a lot of professional teams, this code would be immediately rejected in a

Pull Request.

Let’s rewrite it to follow a declarative style instead.

Well, isn’t this our lucky day?

JavaScript has a method on the Array prototype built in that does exactly

what we need. It’s called map.

Let’s do a few observations again:

1. The function map has a return value. It’s a list with each element

altered as specified in the callback function we provide.

Map doesn’t change its surroundings and will return the same result

every time, given the same callback and input. Hence, map is pure.

2. The original listOfNumbers stays untouched. Map will create a new copy

of the array for us, and alter that one instead. Hence, map is immutable.

7



As it turns out, all the Array-methods (forEach, Map, Reduce, Filter, …) are

following a declarative programming style.

The code becomes way cleaner, easier to test, less prone to introduce bugs,

and much more likely to be approved in a Pull Request on most professional

teams today.

Be careful about the pitfalls, though.

The Array-methods are only pure and immutable to the extent that you use

them as intended.

This is an example I’ve seen very often.

The people object is still mutated on, and the surroundings are still changed.

Doing it as part of reduce isn't changing this.

8



Or how about this?

It’s as imperative and mutable as it

can possibly be!

Why not just use a regular for-loop

then? It has better performance.

Similarly, utility libraries like lodash and date-fns, and UI libraries like React -

that are all built with a functional and declarative style in mind - are only

going to offer all its benefits if it’s used the way it was intended.

I’m my career as a consultant, I’ve often witnessed chaotic, careless - and

sometimes tragically funny - mixes of styles piled on top of each other, which

totally defeats the purpose of keeping consistent with conventions and

coding styles throughout the application.

Of course, software development often goes fast, and there are many

deadlines, demands from product owners, bugs to fix fast, and so on.

So the key is to get a good habit of writing clean and declarative code under

your skin and understand when to be stubborn about it and when to simply

let go.

In the rest of this chapter, I will provide some of the most common examples

of imperative code that could (and should) be refactored into declarative

code and how to do it.

9



Working with arrays

In JavaScript (and in programming, generally), you’ll find yourself working

with arrays a lot.

This is why the famous array methods introduced in ES6 became so popular.

They really make our lives easier.

And recall: They are following a declarative programming style.

In this example, we want to filter a list of candidates to only include

candidates who are also active members (exists in the activeMembers array).

Below is an example of doing this imperatively.

10



There are two red flags that should pop up in your mind here.

1. You are declaring an array outside the body of the loop.

2. You are using the push method to populate an array.

As a rule of thumb: Whenever you’re about to call the push method, ask

yourself if this can be expressed in a declarative way instead.

The push method is mutating on the array.

Let’s refactor it.

Ahh, much better!

No surrounding states are changed. Nothing is mutated on.

The activeCandidates is declared and directly assigned the result of filter,

which takes care of the job for us.

11



Let’s take another example.

Here, we want to iterate through a list of numbers and find the sum.

Below is an example of doing this imperatively.

There are two red flags that should pop up in your mind here.

1. You are declaring a variable outside the body of the loop.

2. You are using the let keyword to initiate the variable.

As a rule of thumb: Whenever you find yourself using the let keyword, ask

yourself if you can achieve the desired result without reassigning the

variable.

In most cases, you don’t want to use let. You want to initiate and assign

variables immediately using const.

12



Let’s refactor it.

Perfect!

One line of code. No surrounding states are changed. No variables are being

reassigned.

I sometimes hear people propose this argument:

“Reduce is difficult to understand. If you have juniors on your team, you may want

to go with the imperative approach”.

I personally couldn’t disagree more.

It all depends on its use - but when reduce is kept simple, as in the example

above, it is perfectly within most junior developers' capability to

comprehend.

This is often a bad excuse from mid-levels and seniors who still haven’t

adapted to this way of writing code but lack clear arguments for why they

would stick in their old imperative ways.

Let’s take another example. Sorting!

13



This one gets a bit messier.

Take a look at the code below.

At first glance, this looks good. We’re not using let, and we’re not mutating on

the original array using something like push. We use an Array-method that

declaratively returns the desired result.

But take a look at the console.log statement.

Yes. JavaScript can be awful like this. It turns out that the sort method is really

old, and does not create a copy of the original array.

Instead, it both mutates on the original array and returns its own array from

the method call.

Weird? Yes.

But there are a handful of old Array-methods that do this.

Be careful with push, shift, unshift, pop, reverse, splice, sort, and fill.

Fortunately, as we saw in the example from before, most often we can simply

avoid calling these methods at all, to stay out of trouble.

14



However, there are cases, like using sort, where we have to use a method that

mutates the original array, in lack of better options.

Array destructuring to the rescue!

Whenever these occasions arise, make sure to manually copy the array first,

before performing an operation on it.

It’s as simple as this.

That [...grades] makes the entire difference.

Get this habit into your fingers.

15



Let’s look at an example using asynchronous operations.

Iterative operations including asynchronous behavior can be a little more

tricky to do using a declarative style.

Let’s say we have a list of names.

For each name, we want to make an API call and get some information, and

then keep a new list with this collection of information.

A typical imperative approach may look like this.

Using an imperative approach makes a bit more sense in this case.

Refactoring to using map or forEach is not that straightforward here.

16



The callbacks provided to map or forEach (or any of the array-methods) are

not awaited, so we have no way of knowing when the full collection of

information is done and ready to use.

However, there is still a way we can write this in a nice, declarative way - and

it even includes a bonus takeaway!

Using the Promise.all method.

Awesome! Now, map returns a list of promises, and the Promise.all method

takes a list of promises and resolves them in parallel.

Not only did the code become much more nice and clean - but we also benefit

from the fact that the promises are not resolved sequentially, which speeds

up the process and increases performance.

17



Avoid using classes

Ahh, classes. At the very root of object-oriented programming lies the

concept of classes.

Classes are blueprints for creating objects. They encapsulate data along with

code to mutate on that data.

In JavaScript, classes are built on prototypes and are used as a template for

creating objects.

They are - as in any other programming language - inherently imperative in

their nature.

The use of classes has its place. It does make sense on some occasions.

But most often, you can avoid using them - and if you can, you should.

So generally, whenever you are about to use a class declaration, ask yourself

if it’s really necessary. Can you express the logic you need in a declarative

way instead, using only functions? In 9/10 cases, I bet you can!

Let’s take a look at some of the most common uses of classes, which can

easily be refactored into using a declarative programming style instead.

18



Working with instances when you really don’t have to

Let’s look at this class which will format a name and creates a greeting.

19



The idea here is to create a class that encapsulates the logic of building our

name, so the consumer doesn’t have to worry about implementation details

and each step in the process.

And that’s great!

But the thing is - there is no need to work with instances in this case.

Having to use the new keyword to create a new NameBuilder instance doesn’t

serve any kind of purpose here.

Yet, this is the most common use of classes I’ve seen in the industry.

The intention is good - but the implementation is pointless.

20



Now, when pointing this out in a code review, most programmers will get the

point. And a common response is: Let’s just make the methods static.

Then there’s no need to create instances anymore.

Great! This is definitely an improvement.

We got rid of the instance variable, so no mutation anymore.

We also have methods that now return values deterministically, based on its

argument. They are pure.

21



But, now that we’re so close - why don’t we just get rid of the class entirely?

It seems like there’s literally no need for it anymore.

Awesome! We did it - we got rid of the class entirely!

Now, the code is declarative, easier to test, easier to debug, and

treeshakable. This means that modern build tools like Webpack and Rollup

are able to remove the dead code of functions that may never be used in a

specific case. It will result in a smaller bundle size of your code.

22



Classes vs Hooks in React

In 2018, React introduced hooks.

They did this to get rid of classes and the confusing this keyword.

Why? Because React is an inherently declarative UI library, and classes just

don't really fit in.

If you were working with React prior to 2018, I bet you’ve been writing a lot

of code like this.

23



Fortunately, after hooks were introduced, we can now benefit from writing

clean and declarative code in React.

Functional components were already a thing before hooks, but we often

needed to refactor it into a class component when the logic grew.

In this way, we don’t have to anymore.

We also don’t have to worry about this, binding methods, not being able to

share logic, and a lot of other things.

I’ll be covering more React best practices later in this book.

24



Create your own abstractions

So, we’ve covered some good rules of thumbs to follow.

But often enough, the code we write in our software is more complex than

the examples we’ve looked at here.

There are cases where writing declaratively, avoiding the let keyword, not

reassigning variables, not altering data in the surrounding scope of a loop,

and so on, is simply going to produce tedious, verbose, and hard-to-read

code.

And obviously, we don’t want to force any style or pattern to an extent where

it makes our code worse, “just because…. functional programming”.

But instead of turning it all around, we can abstract that code away in a

function, and then use that function declaratively in the context where it’s

needed.

Even if the code is not necessarily reusable, it’s still a great practice to

package it away and keep it in its own function scope where it can’t do any

harm. Hence, you want to keep that function pure.

I’ve seen this very often, and it’s a great in-between solution.

Keep the code procedural, and then let the function return the final result.

Procedural code is still imperative code.

You can reassign variables, alter data outside of loops, and mutate on arrays.

But you still cannot use classes, methods, instance variables, and so on.

25



Let’s take an example.

Say we need a function, hasPassed which, given a list of points and a

threshold, does some computation to evaluate if the average of the points is

enough to pass. A developer on the team pushes the following code in a PR.

Sure, as a reviewer, you could jump on this code and demand to refactor

everything to use a strictly declarative pattern.

But there’s actually no point. The code does what it’s supposed to do - and

most importantly, the function hasPassed is still pure.

The use of imperative code inside of the function cannot do any harm.

26



And now I’m able to use the function like this.

Nice, clean, and in a declarative way. That’s all I could ever ask for.

PR approved.

The observant reader may have also noticed how I’m passing arguments

wrapped in an object here.

That’s another good practice that’ll definitely make your team members

happy. More on that later in the book.

As it is with everything - whether to use declarative or imperative code

depends on the situation.

The world is not binary, and the same goes for computers! (...oh, wait?)

Joking aside, I recommend using a functional style as much as possible and

based on my experience, this is also the most popular choice in the industry.

Use imperative code with a bit of skepticism, and strive to avoid it when

possible and when it makes sense.

27



Control flows
In programming, a control flow is how the interpreter runs your code from

top to bottom.

There are a handful of statements and operators that change the control

flow. They are common for mostly all programming languages; loops, if-else,

switch, function calls, ternary, etc.

Hopefully, you know all of these already, and understand how they work.

(If not, it’s time to revisit fundamentals).

In this chapter, I’ll discuss how these statements and operators are used, and

what is widely accepted as best practice in the industry.

Let’s start with one of my favorites.

Guard clauses

“In computer programming, a guard is a boolean expression that must evaluate to

true if the program execution is to continue in the branch in question. Regardless of

which programming language is used, guard code or a guard clause is a check of

integrity preconditions used to avoid errors during execution.”

— Wikipedia

Let’s take a look at an example.

28

https://en.wikipedia.org/wiki/Guard_(computer_science)


We have a function, getValidCandidate, which checks if a candidate is valid,

provided a list of members and returns the member if the candidate is valid,

or undefined otherwise.

The code is sound.

But look how nested it is? Ifs wrapping other ifs, nested 3 times.

Uhf. Let’s rewrite this and use guard clauses instead.

29



Much better! We flattened all the nested levels.

And we’re now using guard clauses.

Notice how we have these breakpoints in the function every time we check if

something is falsy?

These are the guards.

They prevent the function from continuing what it’s doing and instead

returning early if the guarding condition is not met.

Naturally, we also know that the end result is the last return of the function.

30



Skip the ‘else’ part

The if-else statement. It’s one of the first things we learn when starting to

program.

Now, let’s move on by unlearning how to use else.

Generally speaking, if your function includes an else, it’s a sign that your

function is doing more than one thing.

It’s violating the well-known Single Responsibility Principle, and often results in

error-prone branching logic that gets hard to wrap your head around at scale.

So as a rule of thumb, whenever you’re about to write else, stop and

reconsider what you’re doing and search for an alternative way to express

the logic.

Let’s cover a few ways that we can avoid using else.

One of them is guard clauses, which we just covered above.

Another approach is using default values.

Let’s take an example.

31



Let’s say we have a function, negateOdd, which takes a number and negates it

if the number is odd.

The function does what it’s supposed to. But it’s unnecessarily using an else.

Let’s refactor it, and instead, use a default value.

32



Better already! We now assign result with a default value, and the variable will

only be changed if the condition in the if-statement is met.

Now, we also wrap the special case of the function in an if.

You could argue that when reading this function later it might help us quickly

pinpoint where the essential part of the logic is going on.

But let’s do even better. We know from the previous chapter that we’re

supposed to question the use of let and imperative code.

Let’s see if we can make this function even more readable and concise.

There we go! No variable assignment at all. Only different return values

based on the given condition.

Notice how we also moved that essential part of the logic to the end of the

function body. A lot of developers prefer having the essential part of a

function's job put at the end of the function body - just like we did with the

guard clause before.

33



There is a version of if-else that is generally accepted.

It’s the ternary operator.

A ternary operator is essentially an if-else.

So, why is this accepted if we’re supposed to avoid using else?

Because it’s used to assign or return a value directly.

There’s no body. No opening to writing multiple lines of logic.

That’s also why the ternary operator should be restricted to only such usage.

I have seen developers misuse the ternary operator to branch the control flow

in very creative and mysterious ways, including the use of nested ternaries,

which is - by the vast majority of professional teams - considered filthy code

that should be strictly avoided.

You could argue how readable and clean the solution using ternary operator

above is, but in most cases, a function like this would pass a code review.

34



Using a switch-statement

Most likely, you’re not going to need it too often, but there are cases where a

switch-statement makes sense.

If you’re about to write

if-else-if-else-if… a series of times,

you probably want to consider

using a switch-statement instead.

There are certain libraries, for

instance, Redux for React, that

have been using switch-statements

as part of their reducers, per

convention.

Yet, for a case like this, you could use

an object to store the values instead.

If the values need logic to infer, you

could store functions in the object,

and call it after the object lookup.

35



Using functions and partial applications

If you find yourself overusing the statements and operators that change the

control flow, it’s typically a symptom of your code doing way too much.

You get what’s commonly known as spaghetti-code.

Take a look at this made-up example below. Do you recognize it?

I bet you’ve been writing code like this more often than not.

In particular, notice how the code in the if and else seems completely

unrelated.

36



I think we can agree that it’s hard to follow the logic of this kind of code, and

that it’s really easy to sneak in a bug here, and can take hours to spot.

When you find yourself writing code like this, back up, and start splitting it up

into individual functions.

You’ll end up with a nice, flat list of function calls instead, each with a name

representing what they do.

To include conditionals, you can consider using partial applications.

Without going into too much detail, a partial application in JavaScript, is when

a function returns another function, and when that inner function gets

invoked, it’ll have access to the variables from the scope of the outer

function. This is also known as a closure.

Take a look at the illustration below as a quick reference.

37



I will have to admit that it’s not something I have seen used too often.

Granted, this is a more advanced technique from functional programming.

Yet, in certain cases, you can use it to create some quite concise and useful

constructs.

38



Let’s take an example.

Here, we have a function, multiply, which takes three numbers as arguments

and multiplies them. What makes this case complicated, is that only the first

argument is mandatory. That means we have to check for the arguments b

and c before performing the multiplication.

As you can see, this quickly becomes confusing.

A lot of if statements are needed to verify the validity of the input, and it

doesn’t even cover all cases - certain assumptions are still made here.

39



Let’s try to refactor it using the construct of a partial application instead.

As you see, we got the multiply function slimmed down a lot.

And not only that - now the function can actually multiply an indefinite

amount of numbers, provided one part at a time.

Let’s break down what’s happening here.

The function multiply is returning another function that, if given an argument

b, calls itself recursively and applies a from the outer function multiplied with

b. If b is not provided, it simply returns a.

Don’t worry if this seems confusing at first.

Let’s take a more lightweight, practical example from React instead.

40



We’re updating a form using controlled input fields.

Instead of using multiple function calls, arrow function expressions inside of the

JSX, or if-statements to determine which state to update, we use a partial

application (in this case by currying), to take a setter function as an argument

and then return the handler that is provided to the onChange prop.

41



Code hygiene & good practices
We’ve covered two fundamental areas of programming and which styles and

preferences are most commonly accepted in the industry.

In this chapter, I’ll provide examples of what many professional teams

consider good code hygiene in JavaScript, without them being tied to

particular programming areas or concepts.

Let’s start with an example we saw in the previous chapter.

Pass arguments as an object

Say we have a function, createUser, which requires four arguments in order to

create a new user (by calling some API).

When looking at the function signature itself, things seem to make pretty

good sense.

42



But how about when we call it?

It’s pretty unclear what the arguments mean, right?

Especially the last two booleans. I would have to go to the implementation to

look it up.

Instead, we can wrap the arguments in an object.

Thanks to ES6 object destructuring, we can do this easily by simply adding

curly brackets around the arguments.

43

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment


Now, whenever we call createUser, we pass an object as a single argument

with the required values as properties instead.

See how nice that reads out now.

We’re no longer in doubt what those booleans mean.

Also, we get a few more benefits from this approach:

- It’s easier to handle optional properties

- We don’t depend on the order of the arguments

From my experience in the industry, this is a very popular approach whenever

your function requires more than 1-2 arguments.

There’s another version of this that I’ve seen very often:

Passing optional arguments as an options object.

This is adopted in NodeJS and a range of well-known Open-Source libraries.

44



The idea is to pass 1-2 essential arguments and then pass the remaining

arguments as an options object.

Now we need to check if the options object is set before accessing its values

and provide proper fallbacks.

On the other hand, calling the createUser function now looks very clean.

The first two arguments are pretty obvious, and we can now optionally

provide options when needed.

45



Return associated data as tuples

In JavaScript, we can return a single value from a function.

But often enough, we need to return multiple values that are associated

together.

A common approach is to return a tuple containing the values.

In short, a tuple is an ordered list of elements.

Let’s say we have a function, getElementPosition, that retrieves a DOM

element’s position given an id.

In this case, x and y are associated values. Thus, it makes perfect sense to

return them both as a tuple.

46

https://en.wikipedia.org/wiki/Tuple


Do not extend builtins

When you first understand JavaScript’s prototype chain and understand how

you can extend any prototype, including the JavaScript builtins, you may

experience a sensation of overwhelming superpowers.

Now, you can extend the Array prototype to include your own custom array

method along with map, filter, and reduce.

I mean - is this just cool or what?

It’s not! In fact, this is deeply problematic and can lead to a range of rather

serious issues. Extending the builtins should be avoided at all costs.

In fact, there are horror stories of entire applications being brought to their

knees because of this pattern.

Unfortunately, some third-party libraries in the past had a bad habit of doing

this, and you may accidentally override it, causing a world of headaches!

47



Instead, keep things separated and pure!

Build your own utility pack instead, and keep it in its own module.

Much better!

As this collection grows, it’s also

easy to extract it into an NPM

package so it can be reused

across projects.

Avoid default exports

This brings us to the next point.

As you may have noticed, I haven’t used export default in any of my examples.

That’s deliberate.

This is especially important if you’re using TypeScript, but I strongly

recommend getting rid of the habits of using default exports entirely.

Why?

48



Poor Discoverability

It makes it hard for IntelliSense in modern code editors like VSCode and

Webstorm to suggest exports from a module when you start typing.

Annoying when using CommonJS

I don’t know if you’ve ever had to put that .default at the end of a require

statement? Pretty annoying and ugly, isn’t it?

Annoying when using Dynamic Imports

Similar to CommonJS and require, using a Dynamic Import also forces you to

dot into a .default.

Name Protection

When you import from a default export, you can essentially name the import

whatever you want. It’s hard to refactor later, and it may result in naming

inconsistencies and typos.

Re-exporting

Using barrels to re-export modules from a centralized place is common when

creating packages for NPM, or when dealing with larger code-bases with lots

of modules. The default export forces you to rename your export, which again

may lead to inconsistencies in naming.

Some would argue that it’s a matter of use-case, though using named exports

instead of default exports doesn’t really come with any tradeoffs, so I suggest

simply sticking to that.

49



Drop the single-letter variable names

I’ve seen this a lot. Single-letter variable names, especially in callbacks.

Short, concise code is not necessarily ideal.

Take a look at this code right here.

u and e? No thanks, clarity, and readability is ideal.

Even if it cost a few extra lines.

There are a few places where the single-letter variable name is

conventionally accepted. For instance, in for-loops, using the i variable.

Other than that, get a good habit of naming the arguments of the callback.

Typically, you want to be using the singular version of the word of the list.

Like I do here with users and user.

50



Arrow function vs. function declaration

You may have noticed that I’m using the function keyword in my examples,

rather than using arrow function expressions using const.

I’m going to mention it here, even though I cannot give you a clear direction

on this one.

In my experience from the industry, this is strictly down to preference.

After ES6, the arrow function expression seemed to rise in popularity, and

indeed, they do behave differently than classical function declarations.

In the later years, I’ve noticed that the function keyword has found its way

back, and as long as you’re using it without depending on its lexical context

(using it purely, avoid using this, and avoid using it as a constructor), then

you’re fine using either one.

If you’re joining a team and the codebase already follows the convention of

using either one, stick with that.

51



TypeScript
TypeScript is a language for application-scale JavaScript development.

It’s a typed superset of JavaScript used to add static typing and describe the

shapes of objects while working with JavaScript.

It’s an extremely popular choice on professional software teams building

complex web, mobile, and desktop applications at scale.

Yet, it’s definitely not all teams I’ve been working with that have been equally

excited about it.

In fact, some teams downright hate it.

In this chapter, I’ll try to describe the “sweet spot” that both routined

JavaScript developers and TypeScript enthusiasts seem to be on board with,

as well as describing some do’s and don'ts that I’ve seen from the industry.

Don’t overdo it

If you’re working with a team of experienced JavaScript developers, who are

likely to appreciate some of the flexibility you get from the loosely-typed

JavaScript, you are going to get a lot of pushback if you’re trying to introduce

(or even enforce) TypeScript used to its fullest capacity.

So from my experience with TypeScript in the industry, it stands out very

clear: don’t overdo it!

52



It’s great if you’re enthusiastic about TypeScript. It’s an awesome language.

But there’s not a lot of developers who want to see something like this.

(Example code from an actual project I’ve worked on)

From what I’ve seen, the most effective use of TypeScript really boils down to

the following:

- Describing the shape of objects with interfaces

- Typing the arguments and return values of functions

- Using generics to use more general-purpose function signatures

- Using the TypeScript Utility Types for more flexible type descriptions

In particular, it’s popular to describe the JSON response from an API using

interfaces. The IntelliSense enhances productivity quite radically, and with

modern solutions like GraphQL, you can get tools that auto-generate these

interfaces based on the schema.

This part of TypeScript that’s not annoying, but simply saves time, seems to

be quite popular with everyone.

53

https://www.typescriptlang.org/docs/handbook/utility-types.html


Let TypeScript infer the type

One thing I’ve noticed from new TypeScript converts is that they tend to

insist on typing everything.

All functions must have a return type, all arguments must be typed, all

variable declarations must be followed immediately by their type, and so on.

This is the part that’s going to feel very tedious and bureaucratic to the rest

of the team who may not be flying high on TypeScript.

And more importantly: it’s not necessary.

TypeScript is very good at inferring the types themselves. You don’t have to

trivially type out every single thing.

You can always hover the mouse over an argument or a function to see if

TypeScript infers the type (correctly) by itself.

54



You can do the same with variables. If you hover the mouse over the name

variable in the last example, you’ll notice that TypeScript figured it out from

the assignment. No need to type it.

In React, the useState hook is also smart enough to let TypeScript infer the

type based on the default value. No need to type it.

55



Avoid using any

Going from one extreme to another: I’ve also witnessed quite a few teams

changing to TypeScript because of the hype.

But without properly using it, mainly due to writing any all over the place.

Obviously, TypeScript is adding zero value here.

I totally get it - if you’re new to TypeScript, some of the rather obscure

compile-time errors can be confusing and feel like it’s slowing you down.

But if you’re too busy to learn the basics of TypeScript, then I strongly

suggest not using TypeScript. Stick to JavaScript, in that case.

There’s no point in using a strictly typed language if you’re going to enforce

loose typing everywhere.

Avoid using any. Or avoid using TypeScript altogether.

56



React
React is a huge subject, and there are a lot of different opinions out there.

In fact, React is one of the areas of work where I have encountered the most

disagreement on different teams.

In this chapter, I’ll touch upon some of the most common discussions I’ve

witnessed and provide my general impression of how most teams prefer their

React code.

Use React hooks

I’ll keep this one short. If you’re still stuck writing class components, get rid of

that habit right away.

It is my clear impression that by far most teams have now effectively moved

to use React Hooks, so unless you’ve been dealing with legacy projects where

class components are carried over, you can safely expect that the next team

you’re going to join will be using React hooks.

Don’t worry about arrow functions in JSX

If you’ve been learning React for a while, I’m sure you’ve been taught that you

shouldn’t use arrow functions in JSX.

An extra function will be created on each render, and it’s bad for

performance.

57



Not really. The potential performance impact this has is negligible.

It is, on the other hand, convenient and, in a lot of cases, more readable.

It’s generally accepted that the benefits outweigh the potential performance

issues that may be.

As a matter of fact,

when I asked this

question on Twitter last

year, Dan Abramov

from the React Core

team commented “lgtm”

(looks good to me),

implying that he would

approve a PR

containing this code

without reservations.

58

https://twitter.com/dan_abramov/status/1308456399584866305


Don’t return JSX from inner functions

I’ve seen this pattern a lot, and I’ve been involved in a few discussions on this

pattern.

Yet, I’ve found that most teams dislike this.

If you’re about to declare an inner function in a component (perhaps with the

prefix render) that renders JSX conditionally, you should reconsider.

If you find the need to return JSX conditionally, you can use these two

popular solutions:

- Ternary inside the JSX

- Split into a separate component

59



Ternary inside the JSX

I’ve been involved in countless discussions on the use of ternary inside the

JSX, and there seem to be quite heated opinions about it.

From my experience, most developers are good with a solution like this, as

long as the logic is kept simple.

Split into a separate component

60



This is the most “correct” way to do this in React.

It comes with the price of having to pass down the username and isLoading

props an extra level, and if callbacks are needed, these will have to be passed

as well.

Don’t wrap useEffect in an async IIFE

I’ve seen this pattern around a few times, and it’s never a super popular

solution.

You probably recognize the use case. You need to do something asynchronous

in useEffect, but you cannot use the await keyword.

Some would argue that you should be careful about doing something

asynchronous in useEffect, to begin with.

In any circumstances, this is not pretty!

61



If you need to do this, either declare the function inside useEffect and call it

immediately after, or - better - declare it in the component scope instead.

Much better! Most likely, as logic grows, we’d have to do that at some point

anyway. We might as well just do it now and keep the code clean.

Don’t overuse the inbuilt hooks

Yes, hooks are super cool! And when you learn how to use them, you may feel

the urge to put them everywhere.

Please don’t.

Stop overusing useMemo

I’ve encountered this a lot. The fear of assigning a variable from a function

call directly in the component leads developers to use useMemo.

62



Let’s take an example.

It’s easy to see how the developer has been reasoning here.

The HeavyComponent shouldn’t rerender unnecessarily, so the computedValue

is memoized.

The useMemo hook is meant to prevent extensive computation every time a

component re-renders, so the first thing we need to ask ourselves here is; is

the getComputedValue actually an extensive operation?

In most cases, it’s not.

And the cost of having React manage a memoized value actually outweighs

the performance benefits you get from using useMemo.

Instead, don’t be afraid of calling getComputedValue directly from the root of

the component.

63



If the computedValue resolves to a primitive (a string, number, boolean, etc),

we don’t have to worry about HeavyComponent re-rendering either.

If the value doesn’t change, it won’t re-render.

Stop overusing useCallback

Similarly, I’ve seen the useCallback hook being overused as well.

It mostly boils down to two situations:

Either useCallback is used to set an initial state while preventing an infinite

render-loop. But in this case, useEffect is really the hook for the job.

Or, it’s used in the belief that the result will be memoized.

In that case, useMemo is the hook for the job, but most likely, you simply want

to compute whatever you need in the component itself.

In fact, improper use of useCallback actually worsens performance.

If you’re in doubt when to use useCallback, remember that as a rule of thumb,

you’re not going to need it.

64



NodeJS & AWS Lambda
NodeJS is a backend runtime environment that runs on the V8 engine and

enables us to write and execute server-side JavaScript.

Since its initial release 12 years ago, it has gotten immensely popular.

It also happens to be the most popular choice when writing serverless

functions on AWS (Lambda).

It’s a huge topic, and I’ll keep this rather short.

There are a few things I’d like to highlight.

Use promises instead of callbacks

NodeJS was originally built using a callback pattern for asynchronous calls.

All of NodeJS’s builtins are structured this way: You provide the main

arguments along with a callback function that is applied when the

asynchronous operation is done.

65



Remember, NodeJS was introduced in 2009.

In 2021, we use promises.

Fortunately, it’s quite easy to convert these methods to using promises

instead. Let’s look at two different ways.

Using promisify

You can use a utility function, promisify, from the utils module to wrap the

function using a callback in a promise.

It works for all functions that follow the NodeJS callback convention, which

means that it works for a range of old third-party libraries for NodeJS as well.

Fortunately, in NodeJS version 12 and up, it became even easier for us.

66



Using module/promises

Instead of handling the promise-wrapping yourself, all NodeJS builtins come

with a promisified version of their functions, straight from the module itself.

This is, by far, the easiest way to use promises in NodeJS in 2021.

Please, stick to this pattern anywhere you can.

Async handlers in AWS Lambda

The same goes for AWS Lambda.

You don’t have to use the callback argument of your AWS Lambda functions

anymore.

If your handle is async, you can simply return the result instead of applying it

to the callback argument.

67



This is how an AWS Lambda function was expressed prior to the support of

NodeJS version 8.

Today, we don’t have to use the callback argument anymore.

Instead, declare the handler as async, and return the result instead.

If you need to fulfill promises during the function call, you simply apply the

await keyword like you normally would.

68



Final words
Which conventions should I use?

So, after reading this book, you may be left with the question: Which

conventions should I use? Should I blindly follow all the rules, styles, and

conventions from this book?

No!

All teams are different. All codebases are different.

The two most important things to consider first, are keeping a consistent

code base and playing well on a team.

So if you’re invited to a team where both the team and code-base are already

+6 months old, try your best to adopt the styles, preferences, and

conventions you already see.

Listen to your team - if everyone else prefers it in a specific way, go with that.

If the codebase uses a certain pattern consistently, stick with that.

That said, suggestions are always good, and - in my experience - welcomed on

most professional teams.

Remember, being a software developer in the real world is mostly a people’s

game. It’s much less about programming than you might think.

— Simon Høiberg

69



Additional resources

If you’re new to JavaScript and looking for good resources to get started, I

recommend these:

You Don’t Know JS Book Series by Kyle Simpson:

https://www.amazon.com/gp/bookseries/B01N9EBP9V

(Fantastic books!)

Free Code Camp’s YouTube Channel:

https://www.youtube.com/c/Freecodecamp

(A gold mine of FREE resources)

NodeJS Design Patters:

https://www.nodejsdesignpatterns.com/

(This is for you that know JavaScript, but want to get better at NodeJS)

Finally, I want to mention Snappify, which I used to create all the cool code

snippets for this book:

https://snappify.io/

(It’s built by some awesome friends of mine, you should really check it out)

70

https://www.amazon.com/gp/bookseries/B01N9EBP9V
https://www.youtube.com/c/Freecodecamp
https://www.nodejsdesignpatterns.com/
https://snappify.io/


If you haven’t already, you can find me on both YouTube, Twitter, LinkedIn,

and Instagram, where I’m very active in sharing knowledge about SaaS and

online business, software development, and a lot of JavaScript.

YouTube:

https://www.youtube.com/SimonHoiberg

Twitter:

https://twitter.com/SimonHoiberg

LinkedIn:

https://www.linkedin.com/in/simonhoiberg/

Instagram:

https://www.instagram.com/simonhoiberg/

71

https://www.youtube.com/SimonHoiberg
https://twitter.com/SimonHoiberg
https://www.linkedin.com/in/simonhoiberg/
https://www.instagram.com/simonhoiberg/

